H=16t^2+84t+100

Simple and best practice solution for H=16t^2+84t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=16t^2+84t+100 equation:



=16H^2+84H+100
We move all terms to the left:
-(16H^2+84H+100)=0
We get rid of parentheses
-16H^2-84H-100=0
a = -16; b = -84; c = -100;
Δ = b2-4ac
Δ = -842-4·(-16)·(-100)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{41}}{2*-16}=\frac{84-4\sqrt{41}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{41}}{2*-16}=\frac{84+4\sqrt{41}}{-32} $

See similar equations:

| 5^(x+3)=16 | | t+16=20 | | m^2-8m+10=-2 | | 26=37/6x | | p^2-14p+52=7 | | X^2-20x+11=0 | | 647=159+61x | | x−28=8(2x+3)−7 | | 4x+1+3x-5+x=180 | | |10b|=50 | | x/5=3x= | | b^2+6b-48=-8 | | -5(1-5r)+7r=219 | | 82=5(2x+2)-x | | 2.9=k+1.7 | | 4(1-7p)=-108 | | 4(1-7x)=-108 | | 6a+6(a+6)=28 | | -6-7(-6x+6)=-174 | | 8c=64c= | | 4z/7+8=-6 | | 3r^2=108 | | F(-3)=4x^2-6x+3 | | 3(x-5)=x^2 | | z/9+5=5 | | z/7+5=1 | | 4*x^2-(-3*x)^2+x(3*x)+2=0 | | (x+7)(x-5)=64 | | 8x^2-9x+8=0 | | 15=3v/2 | | 3+7-y=2y+12 | | 2(3-6x)-9=3/4x+8 |

Equations solver categories